Probabilities and Quantiles

Introduction

This vignette details how the functions dml(), pml(), qml() and rml() are evaluated using the Mittag-Leffler function mlf() and functions from the package stabledist. Evaluation of the Mittag-Leffler function relies on the algorithm by Garrappa (2015).

Mittag-Leffler function

Write Eα, β(z) for the two-parameter Mittag-Leffler function, and Eα(z) := Eα, 1(z) for the one-parameter Mittag-Leffler function. One has

$$E_{\alpha, \beta}(z) = \sum_{k=0}^\infty \frac{z^k}{\Gamma(\beta + \alpha k)}, \quad \alpha \in \mathbb C, \Re(\alpha) > 0, z \in \mathbb C,$$

see Haubold, Mathai, and Saxena (2011).

First type Mittag-Leffler distribution

pml()

The cumulative distribution function at unit scale is (see Haubold, Mathai, and Saxena (2011))

F(y) = 1 − Eα(−yα)

dml()

The probability density function at unit scale is (see Haubold, Mathai, and Saxena (2011))

$$f(y) = \frac{d}{dy} F(y) = y^{\alpha - 1} E_{\alpha, \alpha}(-y^\alpha)$$

qml()

The quantile function qml() is calculated by numeric inversion of the cumulative distribution function pml() using stats::uniroot().

rml()

Mittag-Leffler random variables Z are generated as the product of a stable random variable Y with Laplace Transform exp (−sα) (using the package stabledist) and X1/α where X is a unit exponentially distributed random variable, see Haubold, Mathai, and Saxena (2011).

Second type Mittag-Leffler distribution

Meerschaert and Scheffler (2004) introduce the inverse stable subordinator, a stochastic process E(t). The random variable E := E(1) has unit scale Mittag-Leffler distribution of second type, see the equation under Remark 3.1. By Corollary 3.1, E is equal in distribution to Yα:

$$E \stackrel{d}{=} Y^{-\alpha},$$

where Y is a sum-stable randomvariable as above.

pml()

Using stabledist, we can hence calculate the cumulative distribution function of E:

P[E ≤ q] = P[Yα ≤ q] = P[Y ≥ q−1/α]

dml()

The probability density function is evaluated using the formula

$$f(x) = \frac{1}{\alpha} x^{-1-1/\alpha} f_Y(x^{-1/\alpha})$$

where fY(x) is the probability density of the stable random variable Y.

qml()

Let q = (FY−1(1 − p))α, where p ∈ (0, 1) and FY−1 denotes the quantile function of Y, implemented in stabledist. Then one confirms

FY(q−1/α) = 1 − p ⇒ P[Y ≥ q−1/α] = p ⇒ P[Yα ≤ q] = p

which means FE(q) = p.

rml()

Mittag-Leffler random variables E of second type are directly simulated as Yα, using stabledist.

References

Garrappa, Roberto. 2015. Numerical Evaluation of Two and Three Parameter Mittag-Leffler Functions.” SIAM J. Numer. Anal. 53 (3): 1350–69. https://doi.org/10.1137/140971191.
Haubold, H. J., A. M. Mathai, and R. K. Saxena. 2011. Mittag-Leffler Functions and Their Applications.” J. Appl. Math. 2011: 1–51. https://doi.org/10.1155/2011/298628.
Meerschaert, Mark M, and Hans-Peter Scheffler. 2004. Limit Theorems for Continuous-Time Random Walks with Infinite Mean Waiting Times.” J. Appl. Probab. 41 (3): 623–38. https://doi.org/10.1239/jap/1091543414.