--- title: "Probabilities and Quantiles" author: "Peter Straka" date: "`r Sys.Date()`" output: rmarkdown::pdf_document bibliography: bibliography.bib vignette: > %\VignetteIndexEntry{Probabilities and Quantiles} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} --- ## Introduction This vignette details how the functions `dml()`, `pml()`, `qml()` and `rml()` are evaluated using the Mittag-Leffler function `mlf()` and functions from the package `stabledist`. Evaluation of the Mittag-Leffler function relies on the algorithm by @Garrappa2015. #### Mittag-Leffler function Write $E_{\alpha, \beta}(z)$ for the two-parameter Mittag-Leffler function, and $E_\alpha(z) := E_{\alpha, 1}(z)$ for the one-parameter Mittag-Leffler function. One has $$E_{\alpha, \beta}(z) = \sum_{k=0}^\infty \frac{z^k}{\Gamma(\beta + \alpha k)}, \quad \alpha \in \mathbb C, \Re(\alpha) > 0, z \in \mathbb C,$$ see @Haubold2011a. ## First type Mittag-Leffler distribution #### `pml()` The cumulative distribution function at unit scale is (see @Haubold2011a) $$F(y) = 1 - E_\alpha(-y^\alpha)$$ #### `dml()` The probability density function at unit scale is (see @Haubold2011a) $$f(y) = \frac{d}{dy} F(y) = y^{\alpha - 1} E_{\alpha, \alpha}(-y^\alpha)$$ #### `qml()` The quantile function `qml()` is calculated by numeric inversion of the cumulative distribution function `pml()` using `stats::uniroot()`. #### `rml()` Mittag-Leffler random variables $Z$ are generated as the product of a stable random variable $Y$ with Laplace Transform $\exp(-s^\alpha)$ (using the package `stabledist`) and $X^{1/\alpha}$ where $X$ is a unit exponentially distributed random variable, see @Haubold2011a. ## Second type Mittag-Leffler distribution @limitCTRW introduce the inverse stable subordinator, a stochastic process $E(t)$. The random variable $E := E(1)$ has unit scale Mittag-Leffler distribution of second type, see the equation under Remark 3.1. By Corollary 3.1, $E$ is equal in distribution to $Y^{-\alpha}$: $$E \stackrel{d}{=} Y^{-\alpha},$$ where $Y$ is a sum-stable randomvariable as above. #### `pml()` Using `stabledist`, we can hence calculate the cumulative distribution function of $E$: $$\mathbf P[E \le q] = \mathbf P[Y^{-\alpha} \le q] = \mathbf P[Y \ge q^{-1/\alpha}]$$ #### `dml()` The probability density function is evaluated using the formula $$f(x) = \frac{1}{\alpha} x^{-1-1/\alpha} f_Y(x^{-1/\alpha})$$ where $f_Y(x)$ is the probability density of the stable random variable $Y$. #### `qml()` Let $q = (F_Y^{-1}(1-p))^{-\alpha}$, where $p \in (0,1)$ and $F_Y^{-1}$ denotes the quantile function of $Y$, implemented in `stabledist`. Then one confirms $$F_Y(q^{-1/\alpha}) = 1-p \Rightarrow \mathbf P[Y \ge q^{-1/\alpha}] = p \Rightarrow \mathbf P[Y^{-\alpha} \le q] = p$$ which means $F_E(q) = p$. #### `rml()` Mittag-Leffler random variables $E$ of second type are directly simulated as $Y^{-\alpha}$, using `stabledist`. ## References