Details of Mittag-Leffler random variate generation

First type Mittag-Leffler distribution

Random variate generation

For the efficient generation of random variates, we use the following useful fact (see e.g. Theorem 19.1 in Haubold, Mathai, and Saxena (2011)): A standard α-Mittag-Leffler random variable Y has the representation:

$$Y \stackrel{d}{=} X^{1/\alpha} Z$$

where X is standard exponentially distributed, Z is α-stable with Laplace Transform E[exp (−sZ)] = exp (−sα), X and Z are independent, and $\stackrel{d}{=}$ means equality in distribution.

Generating X

n <- 5
x <- rexp(n)

Generating Z

To generate such random variates Z, we use

a <- 0.8
sigma <- (cos(pi*a/2))^(1/a)
z <- stabledist::rstable(n = n, alpha = a, beta = 1, gamma = sigma, delta = 0, pm = 1)

Below are the details of the calculation. We use the parametrization of the stable distribution by Samorodnitsky and Taqqu (1994) as it has become standard. For α ∈ (0, 1) and α ∈ (1, 2),

$$\mathbf E[\exp(it Z)] = \exp\left\lbrace -\sigma^\alpha |t|^\alpha \left[1 - i \beta {\rm sgn}t \tan \frac{\pi \alpha}{2}\right] + i a t\right\rbrace$$

As in Meerschaert and Scheffler (2001), Equation (7.28), set

$$\sigma^\alpha = C \Gamma(1-\alpha) \cos \frac{\pi\alpha}{2},$$

for some constant C > 0, set β = 1, set a = 0, and the log-characteristic function becomes

Setting t = is recovers the Laplace transform, and to match the Laplace transform exp (−sα) of Z, it is necessary that CΓ(1 − α) = 1. But then σα = cos (πα/2), and we see that

Z ∼ S(α, β, σ, a) = S(α, 1, cos (πα/2)1/α, 0)

Generating Y

y <- x^(1/a) * z
y
## [1] 0.62320278 0.08116645 2.52830924 0.07928294 4.10315176

References

Haubold, H. J., A. M. Mathai, and R. K. Saxena. 2011. Mittag-Leffler Functions and Their Applications.” J. Appl. Math. 2011: 1–51. https://doi.org/10.1155/2011/298628.
Meerschaert, Mark M, and Hans-Peter Scheffler. 2001. Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. Book. First. New York: Wiley-Interscience.
Samorodnitsky, Gennady, and Murad S Taqqu. 1994. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Stochastic Modeling. London: Chapman Hall.